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Abstract 

Motivation: Drought is one of the most severe environmental stresses affecting terrestrial ecosystems, 

generating conditions that have a major influence in the composition of the microbial communities of 

soil. While much work has focused on genetic and physiological mechanisms of microorganism stress 

tolerance, less attention has been paid to the chemical properties of microbial proteomes as potential 

signatures of adaptation. Previous studies have demonstrated systematic links between environmental 

factors such as salinity and pH and proteome composition, suggesting that proteome-level chemical 

traits may reflect the selective pressures exerted by specific environments. Similarly, we hypothesize 

that bacterial responses to drought are also associated with distinct proteome chemical properties. 

Results: Using a curated dataset of 1,606 predicted proteomes mapped to bacterial taxa previously 

classified as drought-sensitive or drought-responsive from eight soil-moisture manipulation studies, 

we tested whether proteome chemical properties were associated with drought adaptation. Average 

proteome traits, including isoelectric point (pI), carbon oxidation state (Zc), and hydration number 

(nH₂Og), showed consistent differences between the two groups. We found that these proteomic traits 

displayed a significant phylogenetic signal, such that taxa that were phylogenetically closer tended to 

have more similar properties. Nevertheless, pairwise comparisons of closely related sensitive and re-

sponsive organisms within the same phylum revealed a clear difference in their extracellular protein 

chemistry, particularly in the pI of extracellular proteins. Overall, the results demonstrate that prote-

ome chemistry provides a measurable signal distinguishing drought-responsive from drought-sensi-

tive bacteria, likely underlying its adaptive role to cope with water limitation. 

Contact: alejandro.uribe@uvic.cat  

Supplementary information: Supplementary data are available at  https://github.com/AlejandroUL/Alejan-
droUribe_TFM 

 

 

1 Introduction  

Anthropogenic activities are responsible for the fast global 

warming the world is experiencing, gases like CO2, CH4, 

N2O, and so on are inducing climate change, generating an 

increasing of the temperatures at higher rates than before. 

During 2011–2020, global land surface temperature in-

creased by 1.59 °C (1.34–1.83 °C) relative to 1850–1900 

[1]. Rising temperatures increase evapotranspiration, this 

added to changes in rain patterns is leading to a decreasing 

soil moisture. [2] causing an increase of 74% on average of 

areas in drought during 2018–2022 compared with 1981–

2017 [3]. 

 

Soil bacteria carry multiple ecosystem functions that are 

highly sensitive to drought, they drive the disintegration of 

organic matter and the mineralization of nutrients that sus-

tain plant growth, regulating both nitrogen and phosphorus 

availability through processes such as N mineralization/ni-

trification and phosphate solubilization [4, 5]. They also 

build and maintain soil structure by producing extracellular 

polymeric substances that forms aggregates with filamen-

tous fungi enhancing water retention and erosion resistance 

[6]. Beyond nutrient supply and structure, soil microbiomes 

protect plants by generating communities that limit patho-

gen pressure, a function that can be disrupted by extreme 

moisture deficits [7, 8]. Drought also alters greenhouse 

gases flux by restricting microbial respiration and denitrifi-

cation, often reducing N₂O emissions and shifting CO₂ and 

CH₄ dynamics depending on moisture. [3; 9]. It was also 

observed that repeated droughts can create ecological 

memory in soil microbiomes, changing community compo-

sition and multifunctionality and thereby modifying eco-

system responses to later drought episodes [10, 11]. 

These bacteria have generated several strategies to cope 

with osmotic and water limitation caused by drought, some 



Uribe et al. 

taxa survive these adverse conditions by forming resistant 

spores or entering in dormancy state, as observed in Bacil-

lus, actinobacteria, and certain fungi that remain viable un-

til favorable conditions return [12,13]. Others rely on the 

synthesis of compatible solutes or xeroprotectants, such as 

trehalose, ectoine, hydroxyectoine, and polyols, which sta-

bilize proteins and membranes and help maintain osmotic 

balance under water depletion [14]. These adaptive mecha-

nisms, ranging from physiological adjustments to structural 

defenses shape the composition of microbial communities 

under drought and ultimately influence their functional ca-

pacity in soil ecosystems.  

While physiological and structural adaptations such as 

sporulation or osmolyte production have been widely stud-

ied, there is growing evidence that the inherent chemical 

properties of microbial proteomes may also play an im-

portant role in environmental adaptation. For example, 

Dick and Tan (2023) [15] demonstrated that the carbon ox-

idation state (Zc) of microbial community proteomes con-

sistently mirrors environmental redox gradients across hy-

drothermal systems, stratified lakes, and shale gas wells, 

indicating that protein chemistry encodes geochemical con-

ditions. Similarly, Cabello-Yeves and Rodriguez-Valera 

(2019) [16] showed that transitions between marine and 

freshwater environments involve extensive shifts in amino 

acid composition and isoelectric points (pI) of bacterial 

proteomes, particularly in extracellular proteins, reflecting 

the strong selective pressure exerted by salinity. Taken to-

gether, these observations align with established principles 

of protein biophysics: Protein function depends on a tightly 

bound hydration shell and on electrostatic interactions that 

are sensitive to water activity and ionic strength; reductions 

in hydration or shifts in ion composition alter folding dy-

namics and can impair activity [17, 18]. Proteins are least 

soluble near their isoelectric point, so adaptations that shift 

pI and surface charge can preserve net charge and electro-

static repulsion at the ambient pH/ionic regime, limiting ag-

gregation effects that are especially relevant for extracellu-

lar proteins directly exposed to soil porewater chemistry 

[19]. The selection for highly acidic, strongly hydrated pro-

teomes in halophiles exemplifies this principle, where neg-

ative protein surfaces retain water and remain soluble in 

high-salt environments [20]. Building on this framework, 

we believe that bacterial adaptation to drought may also in-

volve distinct proteome-level chemical properties, and that 

this traits could help distinguish drought-responsive from 

drought-sensitive taxa. 

2 Methods 

2.1 Predicted proteomes and metadata used in this 

study 

We assembled a comparative dataset of 1,606 bacterial pro-
teomes to test whether proteome chemical properties differ 

between drought-responsive and drought-sensitive taxa. 
Response labels and metadata were taken from a previously 
curated classification developed by our research group and 
were not modified here. That classification was built from 
eight independent studies in which soil moisture was ex-
perimentally manipulated and its influence on soil bacterial 
community composition was assessed. For each study, raw 
16S rRNA gene reads were downloaded from the NCBI Se-
quence Read Archive, quality-filtered, and processed to in-
fer amplicon sequence variants (ASVs). Differential abun-
dance was then examined in order to identify taxa that in-
creased or decreased in relative abundance under drought 
relative to controls, obtaining in this way the labels known 
as drought-responsive or drought-sensitive, respectively. 
ASVs were aligned to a reference genome database (Ge-
nome Taxonomy Database, GTDB vR220 [21] to obtain 
representative genomes of those taxa. Phylogenetic context 
was provided by the GTDB reference tree (release R220). 
For each mapped accession, the predicted protein se-
quences from the corresponding GTDB genome were re-
trieved from the GTDB proteome database (R220) [2]. 

2.2 Extracellular and intracellular partitioning of pro-

teins 

We predicted secretory signal peptides (SP) with SignalP 

6.0 using python  version 3.9.21 [23], which classifies se-

quences into five SP types: SP (Sec/SPI), LIPO (Sec/SPII), 

PILIN (Sec/SPIII), TAT (Tat/SPI), and TATLIPO 

(Tat/SPII); sequences without a signal peptide are labeled 

OTHER. In this study, we defined the extracellular set 

strictly as proteins predicted with SP (Sec/SPI), i.e., sub-

strates of the Sec pathway cleaved by Signal Peptidase I, a 

well-studied export route. Proteins predicted as LIPO, 

PILIN, TAT, or TATLIPO were not included in the extra-

cellular set because these classes frequently correspond to 

membrane-anchored lipoproteins, pilus subunits, or pro-

teins that remain periplasmic/surface-attached rather than 

freely secreted [24-27]. All proteins labeled OTHER were 

treated as intracellular.  

2.3 Chemical metrics of the proteins 

All computations were performed in R (v 4.3.2) and Python 
(v 3.13.1). Each protein isoelectric point (pI), was calcu-
lated in Python using ProtParam from Biopython (v 1.85), 
here the method proposed by Bjellqvist  is applied in order 
to calculate this metric [28,29]. 
Carbon oxidation state (Zc) and hydration number (nH₂Og) 
were computed in R with the canprot package (v 2.0.0) 
[26]. Canprot works calculating the average proteome 
properties from the overall aminoacid composition of it, 
and in order to obtain this the ProtParam routine from bi-
opython was used. For Zc Canprot uses calculations based 
on the elemental formula of proteins CcHhNnOoSs as seen 
in equation 1: 
 



𝑍𝑐 =
−ℎ+3𝑛+2𝑜+2𝑠

𝑐
 (1) 

 
While nH2Og accounts for the theoretical number of water 
molecules involved in the reaction that produces certain 
protein normalized by its mass [31,32]. 

For each proteome and for each subcellular partition 

(global, extracellular, intracellular), we summarized met-

rics as the arithmetic mean across proteins. All metrics 

were computed independently per proteome. 

2.4 Closest-relative pairing 

Common evolutionary history creates common sequence 

patterns that can create spurious correlations between mi-

crobial traits and genome-derived features To minimize 

broad phylogenetic effects, we paired each drought-sensi-

tive proteome with the most closely related drought-re-

sponsive proteome using the phylogenetic tree obtained 

from previous research in the group and then we compared 

their chemical properties. We first read the GTDB-based 

bacterial tree and computed cophenetic pairwise distances 

(sum of branch lengths between tips) using the ape package 

(v 5.8-1) from R.  

From the complete distance matrix, we built a submatrix 

with rows restricted to sensitive genomes and columns to 

responsive genomes. For each sensitive genome, we iden-

tified the single responsive genome with minimum cophe-

netic distance and recorded that pair together with the tree 

distance. This produced one closest-relative pair per sensi-

tive genome.  

For each pair, we retrieved the precomputed per-proteome 

metrics (pI, nH₂Og, Zc) for both members, assembled them 

side by side, and calculated both absolute differences and 

ratios (Sensitive/Responsive).  

2.5 Statistical analyses 

All statistical analyses were performed in R (v4.3.2). In or-

der to find the most suitable method for the significance, 

the distribution of the analyzed data was assessed using 

Shapiro-Wilk test. Based on that result the decision 

whether to make the one-sample one-sided t-test or Wil-

coxon rank sums test was taken on the normality ac-

ceptance or rejection. 

For drought-responsive vs drought sensitive comparison 

between phyla seen in the boxplots, two-sided Wilcoxon 

signed-rank tests was used due to the non-existence of nor-

mally distributed pI values within this data. In this compar-

ison BH correction was used due to multiple hypothesis 

testing. 

To test the differences in the magnitude of pI peaks be-

tween DR and DS extracellular proteomes, we ran Wil-

coxon Rank-Sum Test test on the proteins within a range of 

± 0.5 Ip points around the peak. 

Finally, to determine whether phylogenetic relatedness was 

associated with proteome properties, we performed a Man-

tel test. Phylogenetic distances between genomes were ob-

tained from the reference tree, and Euclidean distances of 

proteomes pI were calculated for the same set of genomes. 

The Mantel statistic is the Pearson correlation between the 

two distance matrices. Significance was assessed utilizing 

999 of the distance matrix labels that were randomly per-

muted, as carried out through R package vegan's (v2.7-1) 

mantel function. 

Statistical significance was evaluated at α = 0.05. 

2.6 Visualization 

Figures were generated in R using ggplot2 (v 3.5.2). Box-

plots summarize per-proteome distributions by group and 

by phylum. Density plots were made just for pI values us-

ing this metric from each individual protein for extracellu-

lar and whole proteomes. Phylogenetic trees was rendered 

using ITOL [33] and annotated with response labels and pI. 

2.7 Reproducibility and availability 

All scripts used to calculate chemical metrics, partition pro-
teomes, perform phylogenetic pairing, and generate figures 
are available as supplementary material together with inter-
mediate data tables required to reproduce the analyses in 
the following Github file: 
 https://github.com/AlejandroUL/AlejandroUribe_TFM 

3 Results 

3.1 Data Structure  

Among 1,606 proteomes, 1,048 were classified as drought-

responsive (DR) and 558 as drought-sensitive (DS). The 

DR set comprised 5,416,113 proteins and the DS set 

2,565,670 (7,981,783 in total). To quantify class imbalance 

arising from unequal numbers of proteomes and proteins 

https://github.com/AlejandroUL/AlejandroUribe_TFM
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(by proteomes: 65.3% DR, 34.7% DS; by proteins: 67.9% 

DR, 32.1% DS), we computed Shannon entropy H  using a 

base-2 logarithm This metric quantifies the balance of a 

distribution, for two classes, H ranges from 0 (all observa-

tions in one class) to 1 bit (perfect balance) [34]. We ob-

tained H=0.932 for proteome counts and H=0.906 for pro-

tein counts, ~93% and ~91% of the two-class maximum, 

respectively. These values indicate a moderate skew toward 

DR rather than extreme imbalance.  

As seen in figure 1, The top 10 phyla (out of 26) account 

for 1,564 of the 1,606 proteomes. Proteobacteria (570) and 

Actinobacteriota (439) dominate the sampling, together 

comprising circa 65% of these proteomes; Firmicutes con-

tribute 226, and Bacteroidota 163. Within-phyla response 

tallies are uneven: Actinobacteriota are strongly enriched 

in drought-responsive (DR) taxa (374 of 439, 85%), as are 

Firmicutes (165 of 226, 73%) and Chloroflexi (11 of 14, 

79%). Proteobacteria show a milder DR skew (324 of 570, 

57%), whereas Bacteroidota are essentially balanced (81 

DR vs. 82 drought-sensitive, DS) and Acidobacteriota lean 

DS (28 DR vs. 33 DS). Several smaller phyla are DR-

biased but with low counts (for example, Gemmatimonad-

ota, 8 of 8 DR). 

This phylum-level pattern mirrors widely reported drought 

responses in soils, where Gram-positive groups, particu-

larly Actinobacteria and many Firmicutes, tend to increase 

in relative abundance, while several Gram-negative line-

ages decline. Multiple field and mesocosm studies have 

documented Actinobacteria and Firmicutes enrichment un-

der water limitation or during dry years, often attributed to 

traits such as thicker cell walls and spore formation that en-

hance survival under desiccation and osmotic stress [35-

36]. This concordance with prior literature supports inter-

preting the observed DR over-representation in Actinobac-

teriota and Firmicutes as biologically meaningful rather 

than a purely sampling artifact, while reinforcing the need 

for phylogeny-aware comparisons in downstream analyses. 

 

3.2 Overall pI patterns 

We began with the a priori expectation that proteins most 

directly exposed to the environment would show the clear-

est signature of drought response. On that basis we repeated 

all comparisons at two levels: whole proteomes and the ex-

tracellular subset. Intracellular-only analyses were also per-

formed but are deferred to the Supplementary Material be-

cause they closely resembled the whole proteome results 

and did not add additional signal. 

Considering all proteins, pI differs significantly between 

DR and DS bacteria (Fig. 2A, p = 1.01 × 10-32) having a 

similar result for intracellular proteins (supplementary ma-

terial Fig 1), this difference is seen as well when restricting 

to extracellular proteins (Fig. 2B, p = 2.56 × 10-12). 

The density plots clarify where these differences arise. For 

whole proteomes (Fig. 2C), DR and DS largely overlap and 

both show a multimodal structure. The main acidic mode 

for both groups lies near pI ≈ 5.2, where most proteins con-

centrate. In the basic range the order flips: DS shows a 

higher mode around pI ≈ 9.5 than DR, indicating a relative 

enrichment of DS proteins at higher pI values. 

For extracellular proteins (Fig. 2D), the dominant modes 

shift toward the basic side for both groups, and the tall 

acidic peak seen in Fig. 2C is reduced. The acidic modes 

are no longer aligned: DR higher peak falls near pI ≈ 5, 

whereas the highest acidic mode for DS is closer to pI ≈ 6. 

This offset is consistent with DR having a more acidic dis-

tribution than DS. The separation in the basic range is also 

stronger than in the whole-proteome plot, reinforcing that 

Figure 1 Number of proteomes per phylum stacked by drought response. 



extracellular proteins may accentuate the groups differ-

ence. To assess which peaks are driving this contrast be-

tween DS and DR, Fig. 2E shows the density difference Δ 

Density = Sensitive − Responsive for the extracellular sub-

set. Here DS is significantly depleted around pI 4.5-5.5, 

significantly enriched around pI 7-8; 8.5–9.5, and depleted 

again in 9.5-10.5. Together, these patterns support that DR 

and DS differ in pI distributions. 

Although DR and DS differ significantly in pI at the whole-

proteome level and also for extracellular proteins, the da-

taset is not perfectly balanced across different taxa. Several 

phyla are more heavily represented than others, and some 

show a skew toward one response type. For example, Ac-

tinobacteriota includes many more DR than DS genomes, 

which could amplify group differences simply due to taxa 

composition. To address this potential phylogenetic bias, 

the next analyses stratify comparisons by phylum and then 

pair sensitive genomes with their closest responsive rela-

tives within the same clade. 

3.3 Phylogenic relationship with isoelectric point 

To address the phylogenetic bias noted above, we stratified 

the analysis by phylum. Panels A and B from figure 3 dis-

play pI distributions for the extracellular subset and for 

whole proteomes, respectively. In the extracellular fraction 

(A), the separation between response groups varies by lin-

eage: DR medians exceed DS in Actinobacteriota, Chlor-

oflexi, Bacteroidota, Acidobacteriota, and Firmicutes, 

whereas DS medians exceed DR in Planctomycetota, Myx-

ococcota, Verrucomicrobiota, Gemmatimondota, and 

Proteobacteria. In several phyla the extracellular distribu-

tions are wider than their whole-proteome counterparts, in-

dicating greater dispersion for secreted proteins. For whole 

proteomes (Fig. 3B), differences are generally smaller, and 

many phyla show DS with slightly higher medians than 

DR, consistent with the modest global shift reported earlier. 

Panels C and D from figure 3 summarize these patterns 

with the median ratio of Sensitive to Responsive pI by phy-

lum. For whole proteomes (Fig. 3C), the ratios cluster 

above 1 across most phyla, and a one-sample Wilcoxon test 

against 1 (H1 > 1) is significant (p = 0.031), indicating a 

consistent tendency for DS to have higher pI than DR when 

averaged at the proteome level. In contrast, for extracellular 

proteins (Fig. 3D) the ratios scatter around 1 with mixed 

directions across phyla and the corresponding test (one 

sample on sided t-test) is not significant (p = 0.323) for 

H1>1. This attenuation of the extracellular signal once 

phyla are separated supports the presence of a phylogenetic 

imprint on the global contrasts.  

Panel E in Fig. 3 quantifies this imprint by relating pairwise 

pI distances to phylogenetic distances for all proteome pairs 

in the dataset. pI differences increase with evolutionary dis-

tance, as shown by the positive Mantel correlation (r = 

0.264, p = 0.001). Together, these results indicate that much 

of the group-level separation is structured by taxonomic 

composition. 

Figure 2 pI patterns for extracellular proteins and whole proteomes. * p < 0.05; ** p < 0.001, *** p < 0.0001. 



Uribe et al. 

In the phylum-stratified boxplots, the across-phyla varia-

tion in pI is much more pronounced for the extracellular 

subset (Fig. 3A) than for whole proteomes (Fig. 3B). Even 

when DR and DS are similar within a given phylum, the 

offsets between phyla are larger and the spread is wider for 

extracellular proteins. This means the overall DR–DS 

Figure 3 pI patters stratified by phylum. * p adj < 0.05; ** p adj < 0.001, *** p adj < 0.0001. 

Figure 4 Phylogenetic tree with ectracellular proteins pI and Drought response for every proteome 



contrast can be shaped strongly by which phyla are most 

represented, rather than by response type alone. To make 

this lineage effect explicit, we mapped only extracellular pI 

values onto a phylogenetic tree (Fig. 4), where stretches of 

similar color within clades highlight the phylogenetic im-

print on extracellular proteome chemistry. 

In the ITOL phylogenetic tree, contiguous segments of the 

outer ring display nearly uniform color, indicating similar 

extracellular pI values within clades. These blocks of color 

coincide with phylogeny rather than appearing randomly, 

consistent with a strong lineage effect on extracellular pro-

teome chemistry. This observation, together with the 

within-phylum median pattern, motivated a more detailed 

exploration in order to minimize as much as possible the 

phylogenetic imprint observed in Figures 3E and 4. We 

therefore paired each DS genome with its closest DR 

relative within the same phylum to test whether the differ-

ences in chemical properties were more remarkable. 

3.4 Closest-relative ratios clarify extracellular pI differences 

To account for the phylogenetic bias noted above, we 

paired each DS genome with its closest DR relative (i.e. the 

genome with minimal phylogenetic distance) within the 

same phylum and computed the pI ratio = Sensitive/Re-

sponsive. In the scatterplots, the y-axis is this ratio (values 

> 1 indicate higher pI in the sensitive proteome) and the x-

axis are the phylums (Figure 5). 

The overall trend is that sensitive extracellular proteomes 

have higher pI than their closest responsive relatives, and 

this is seen consistently across most phyla in panel A. By 

contrast, the whole-proteome ratios in panel B are less 

clear: several phyla, including Proteobacteria, 

Figure 5 Closest relative ratio plot. Note the horizontal bands that appear in some phyla. These are expected given that multiple 
genomes can share the same nearest opposite-response neighbor, and closely related neighbors often have very similar pI (see 

Bateriodota phylum in Fig. 4) 
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Bacteroidota, Acidobacteriota, and Myxococcota, cluster 

close to 1 with mixed directions, and in Gemmatimonadota 

and Verrucomicrobiota the tendency even reverses in some 

pairs (Figure 5). This contrast between panels A and B in-

dicates that the signal is strongest and most consistent in 

the extracellular fraction, whereas inclusion of intracellular 

proteins masks it.   

4 Discussion and conclusion 

In this research we observed that DR bacterial proteomes 

tend to have a more acidic pI than those that are DS. Nev-

ertheless, a strong phylogenetic bias was always present 

during the analyses, where similar taxa present similar val-

ues of pI. We showed that once this phylogenetic imprint 

was reduced, clear differences in the extracellular pI of 

drought-responsive and drought sensitive bacterias within 

the same phylum emerge. This suggests that proteome pI is 

not just a by-product of ancestry, but a trait that is linked to 

drought adaptation. 

DR bacteria were found to have a more acidic extracellular 

proteome than DS taxa and several environmental features  

during drought provide a probable reason for this pattern. 

Soil drying induces profound physicochemical changes that 

directly challenge protein stability [37]. This process in-

creases ionic strength by several folds while simultane-

ously lowering water activity, conditions that are known to 

destabilize proteins through multiple mechanisms. These 

include the screening of electrostatic interactions, promo-

tion of complex dissociation, and enhanced aggregation as 

molecular crowding intensifies [37]. Furthermore, pH 

changes during soil drying reduce this value but it remains 

circa 6-7, which stays above the isoelectric point (pI) of 

acidic extracellular proteins, thereby preserving their nega-

tive net charge throughout the stress period. Our results 

therefore align with extensive evidence that shows how 

negatively charged, low-pI proteins maintain solubility, hy-

dration shells, and structural stability in high ionic strength 

environments [38-39]. 

The presence of a strong phylogenetic signal in pI seen in 

this study raises further questions. Why do entire phyla 

show consistent biases in proteome acidity? One possible 

explanation is that major bacterial groups have evolved in 

different ecological niches with varying baseline physico-

chemical conditions. As a result, their proteomes may have 

developed broad charge biases [40]. Actinobacteriota, for 

instance, have extracellular proteomes that are consistently 

more acidic compared to other phyla. This suggests that 

ecological specializations at the lineage level can leave last-

ing marks on proteome chemistry, which then interact with 

stress responses like drought. 

The nature of the dataset has some limitations, first the im-

balance presented in the majority of taxa may affect the 

comparisons made, furthermore, in silico predicted proteo-

mes were used rather than experimental measurements, this 

in turn does not have into account post-translational modi-

fications or context-dependent folding. 

Looking forward, this investigation opens a promising line 

of research. Experimental validation of proteome charge ef-

fects under controlled desiccation would help test whether 

acidic proteomes indeed confer higher resilience, In addi-

tion to this, metaprometomics experiments over natural en-

vironments could reveal bacterial communities pI and its 

relationship with moisture. 
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